skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCabe, Megan E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Browne, Eleanor (Ed.)
    Abstract. Agricultural emissions, including those from concentrated animal feeding operations (CAFOs) for beef and dairy cattle, make up a large portion of the United States' total greenhouse gas (GHG) emissions. However, many CAFOs reside in areas where methane (CH4) from oil and natural gas (ONG) complicates the quantification of CAFO emissions. Traditional approaches to quantify emissions in such regions often relied on inventory subtraction of other known sources. We compare the results of two approaches to attribute the CAFO CH4 emission rate from the total CH4 emission rate derived from an aircraft mass balance technique. These methods make use of the mixing ratio data of CH4, ethane (C2H6), and ammonia (NH3) that were collected simultaneously in-flight downwind of CAFOs in northeastern Colorado. The first approach, the subtraction method (SM), is similar to inventory subtraction, except the amount to be removed is derived from the observed C2H6 to CH4 ratio rather than an inventory estimate. The results from this approach showed high uncertainty, primarily due to how error propagates through subtraction. Alternatively, multivariate regression (MVR) can be used to estimate CAFO CH4 emissions using the NH3 emission rate and an NH3 to CH4 ratio. These results showed significantly less uncertainty. We identified criteria to determine the best attribution method; these criteria can support attribution in other regions. The final emission estimates for the CAFOs presented here were 13 ± 3 g of CH4 per head per hour and 13 ± 2 g of NH3 per head per hour. These estimates are higher than the inventory of the US Environmental Protection Agency (EPA) and previous studies highlighting the need for more measurements of CH4 and NH3 emission rates. 
    more » « less
  2. Abstract Phase One of the Transportation and Transformation of Ammonia (TRANS2Am) field campaign took place in northeastern Colorado during the summer of 2021. One of the goals of TRANS2Am was to measure ammonia (NH3) emissions from cattle feedlots and dairies. Most of these animal husbandry facilities are co‐located within oil and gas development, an important source of methane (CH4) and ethane (C2H6) in the region. Phase One of TRANS2Am included 12 near‐source research flights. We present estimates of NH3emissions ratios with respect to CH4(NH3EmR), with and without correction of CH4from oil and gas, for 29 feedlots and dairies in the region. The data shows larger emissions ratios than previously reported in the literature with a large range of values (i.e., 0.1–2.6 ppbv ppbv−1). Facilities housing cattle and dairy had a mean (std) of 1.20 (0.63) and 0.29 (0.08) ppbv ppbv−1, respectively. We also found that only 15% of the total ammonia (NHx) is in the particle phase (i.e., ) near major sources during the warm summertime months. We examined the evolution of NH3in one plume that was sampled at different distances and altitudes up to 25 km downwind and estimated the NH3lifetime against deposition and partitioning to the particle phase to be 87–120 min. Finally, we calculated estimates of NH3emission rates from four optimally sampled facilities. These ranged from 4 to 29 g NH3 · h−1 · hd−1
    more » « less